Go Contain Me
My first day at SREcon Americas 2018 was very exciting and inspiring. It started with the Containers from Scratch workshop by Avishai Ish-Shalom and Nati Cohen. They developed a syscall-level workshop about Linux containers that I can highly recommend. It deals with a program containing and isolating itself step by step using Linux systemcalls. In the end, the program would fork to drop the last bit of privileges that is left. That was super fun, although the network namespaces gave me a hard time due to a silly implementation mistake I made.
The workshop code is in Python and worked perfectly. However, I want to improve my Golang skills so I decided to redo the assignments from the workshop in Go. Shouldn’t be too hard, should it? After all, docker is written in Go.
This is my write-up of the endeavor.
General Idea
Similar to other popular container solutions, our little program should:
- Use the host’s Kernel space
- Have its own userspace binaries (e.g. busybox)
- Have a unique ID
- Use cgroups to limit its own resource usage
- Use an overlay filesystem to avoid messing with the userspace binaries that may be used by multiple containers at the same time
- Use Linux namespacing for mounts, processes, network, and UNIX time-sharing (uhm, the last one is some historical thingy)
- Make special devices, such as
/dev/null
and/dev/urandom
available inside the container - Overload the currently running binary with a binary from inside the container. And run it.
Spoiler alert: We will not make all of this work. The processes namespace gave me a hard
time because I was restricting myself to state-of-the art standard libraries and avoiding
custom CGO code. Unfortunately, the syscall
package is not considered
state-of-the-art anymore. So I had to avoid using it. 😔
Who Am I?
Our container will start off as a simple process that will slowly isolate itself from the current environment. First, we want to know who we are, so we fetch the process ID (PID) first.
pid := unix.Getpid()
log.Printf("pid: %v", pid)
We also want a unique identifier for our container. Process IDs are limited and might eventually be re-assigned. So let’s grab a UUID and use that.
id := uuid.New().String()
log.Printf("container id: %v", id)
We can use the container ID to name directories in a non-conflicting way later. It is highly unlikely that any two UUIDs collide in an environment like ours.
Building Fences
Next thing we want to do is to build a fence around our process. We do this for CPU and
memory using Linux cgroups. For this we want to write our PID to
/sys/fs/cgroup/cpu/go-contain-me/<UUID>/tasks
and write the number of
CPU shares we want to grant the process into
/sys/fs/cgroup/cpu/go-contain-me/<UUID>/cpu.shares
.
cgroupCPU := "/sys/fs/cgroup/cpu/go-contain-me/" + id + "/"
log.Println("cpu cgroup: create")
err = os.MkdirAll(cgroupCPU, 0744)
if err != nil {
log.Fatal(err)
}
log.Println("cpu cgroup: add pid")
err = ioutil.WriteFile(cgroupCPU+"tasks", []byte(strconv.Itoa(pid)), 0644)
if err != nil {
log.Fatal(err)
}
if len(*cpuShares) > 0 {
log.Println("cpu cgroup: set shares")
err := ioutil.WriteFile(cgroupCPU+"cpu.shares",
[]byte(*cpuShares), 0644)
if err != nil {
log.Fatal(err)
}
}
For the memory cgroup we do something similar, yet there is a small difference. We are not supposed to set shares here, but the actual number of bytes we want the process to be limited to. We can also limit the number of swap bytes the process is allowed to consume.
cgroupMemory := "/sys/fs/cgroup/memory/go-contain-me/" + id + "/"
log.Println("memory cgroup: create")
err = os.MkdirAll(cgroupMemory, 0644)
if err != nil {
log.Fatal(err)
}
log.Println("memory cgroup: add pid")
err = ioutil.WriteFile(cgroupMemory+"tasks",
[]byte(strconv.Itoa(pid)), 0644)
if err != nil {
log.Fatal(err)
}
if len(*memoryLimit) > 0 {
log.Println("memory cgroup: set memory limit")
err := ioutil.WriteFile(cgroupMemory+"memory.limit_in_bytes",
[]byte(*memoryLimit), 0644)
if err != nil {
log.Fatal(err)
}
}
if len(*swapLimit) > 0 {
log.Println("memory cgroup: set swap limit")
err := ioutil.WriteFile(cgroupMemory+"memory.memsw.limit_in_bytes",
[]byte(*swapLimit), 0644)
if err != nil {
log.Fatal(err)
}
}
Great, now we have contained ourselves in terms of resource usage.
Overlay Root File System
Now we shall isolate our process further from the host system step by step. Let’s assume we
have an extracted userspace image at /root/go-contain-me/images/busybox
. You
can use docker extract
to get your hands on one quickly if needed. 🐳
As multiple containers might be using the same underlying image, we have to make sure we do not write to the image data. However, we still want to be able to make changes to the data, such as adding, modifying, or removing files. But how? The overlay filesystem comes to the rescue! As the name suggests, we can overlay something called an upperdir onto a lowerdir. We would also need a workdir where we store some copy-on-write information, e.g. for files that have been deleted during operation.
So the first order of business for overlaying a filesystem is to make sure all the required directories exists:
newRoot := baseDir + "/containers/" + id + "/rootfs"
workDir := baseDir + "/containers/" + id + "/workdir"
for _, path := range []string{newRoot, workDir} {
err = os.MkdirAll(path, os.ModePerm)
if err != nil {
log.Fatal(err)
}
}
After that the whole operation is just a regular mount with a less often seen set of options:
log.Printf("mount: overlay")
imageRoot := baseDir + "/images/" + *image
err = unix.Mount("overlay", newRoot, "overlay", uintptr(unix.MS_NODEV),
"lowerdir="+imageRoot+",upperdir="+newRoot+",workdir="+workDir)
if err != nil {
log.Fatal(err)
}
The MS_NODEV
flag, by the way, prevents special files (devices) to be accessed
on this filesystem. We will create those later using the mknod
system call.
Moving To A New Mount Namespace
Right now, our mounts show up on the host and pollute it a bit. Luckily, we can isolate our mounts from the host mounts by creating a new namespace for our process (at some point we can start calling the process a container).
log.Printf("newns: mount")
err = unix.Unshare(unix.CLONE_NEWNS)
if err != nil {
log.Fatal(err)
}
Now we remount the root filesystem in our namespace to assign it to the newly created namespace:
log.Printf("remount: /")
err = unix.Mount("", "/", "", uintptr(unix.MS_PRIVATE|unix.MS_REC), "")
if err != nil {
log.Fatal(err)
}
We are using flags again:
-
MS_PRIVATE
makes sure that mounts and unmounts events do not propagate into our out of this mount point. -
MS_REC
just means that the flags it is used in conjunction with are meant to be applied recursively.
Special Mounts
Now that we have our isolated mount namespace, it is time to mount some special filesystems
there. Let’s use a for
loop to avoid writing the same code over and over
again.
mounts := []struct {
source string
target string
fsType string
flags uint
options string
}{
{source: "proc", target: newRoot + "/proc", fsType: "proc"},
{source: "sysfs", target: newRoot + "/sys", fsType: "sysfs"},
{
source: "tmpfs",
target: newRoot + "/dev",
fsType: "tmpfs",
flags: unix.MS_NOSUID | unix.MS_STRICTATIME,
options: "mode=755",
},
{
source: "devpts",
target: newRoot + "/dev/pts",
fsType: "devpts",
},
}
for _, mnt := range mounts {
// ensure mount target exists
log.Printf("mkdirall: %v", mnt.target)
err := os.MkdirAll(mnt.target, os.ModePerm)
if err != nil {
log.Fatal(err)
}
// mount
log.Printf("mount: %v (%v)", mnt.source, mnt.fsType)
flags := uintptr(mnt.flags)
err = unix.Mount(mnt.source, mnt.target, mnt.fsType, flags, mnt.options)
if err != nil {
log.Fatal(err)
}
}
This should leave us with most the most important filesystems in place under our new root.
Remember, our new root is still seen as
/root/go-contain-me/containers/<UUID>/rootfs
. But that is going to
change soon.
Essential File Descriptors
We will soon pivot the process’ root to use our container’s rootfs
directory
as root. See how I just used container now instead of process? This was totally arbitrary.
🙃 But before we lose access to the current filesystem tree, let’s rescue essential file
descriptors such as stdin
and stdout
. Without them functioning,
we would not have much fun with our container.
A simple symlink()
does the job:
for i, name := range []string{"stdin", "stdout", "stderr"} {
source := "/proc/self/fd/" + strconv.Itoa(i))
target := newRoot + "/dev/" + name
log.Printf("symlink: %v", name)
err := unix.Symlink(source, target)
if err != nil {
log.Fatal(err)
}
}
Creating Devices
Processes running inside our container may assume that a certain set of special devices is
present. One popular example being /dev/null
, which is often used to drop data
streams into Nirvana. If /dev/null
weren’t present those data streams may end
up in a regular file. This could, in turn, quickly fill up the filesystem. If there are no
quotas on the container’s filesystem, this might affect the host’s filesystem as well. Not
cool.
We’ll use the loop approach one more time here:
devices := []struct {
name string
attr uint32
major uint32
minor uint32
}{
{name: "null", attr: 0666 | unix.S_IFCHR, major: 1, minor: 3},
{name: "zero", attr: 0666 | unix.S_IFCHR, major: 1, minor: 3},
{name: "random", attr: 0666 | unix.S_IFCHR, major: 1, minor: 8},
{name: "urandom", attr: 0666 | unix.S_IFCHR, major: 1, minor: 9},
{name: "console", attr: 0666 | unix.S_IFCHR, major: 136, minor: 1},
{name: "tty", attr: 0666 | unix.S_IFCHR, major: 5, minor: 0},
{name: "full", attr: 0666 | unix.S_IFCHR, major: 1, minor: 7},
}
for _, dev := range devices {
dt := int(unix.Mkdev(dev.major, dev.minor))
log.Printf("mknod: %v (%v)", dev.name, dt)
err := unix.Mknod(newRoot +"/dev/" dev.name, dev.attr, dt)
if err != nil {
log.Fatal(err)
}
}
Isolate The UNIX Time-Sharing Namespace
We are coming closer to pivoting the root. I promise. However, there are still a few more isolation steps we should do. For example, we want the hostname of the container to be isolated from the hostname of the host. One might expect this to fall under the domain of the network namespace. Surprisingly that is not the case. For historical reasons, the namespace for this is the UNIX Time-Sharing namespace or short UTS.
So let’s unshare()
this one before setting the hostname:
log.Printf("newns: UNIX time sharing")
err = unix.Unshare(unix.CLONE_NEWUTS)
if err != nil {
log.Fatal(err)
}
// change hostname in new UTS
log.Printf("set hostname")
err = unix.Sethostname([]byte(id))
if err != nil {
log.Fatal(err)
}
Isolate The Process Namespace (b0rked)
We also want to isolate the container process namespace from the host. Meaning, that if we
run ps
on the container, we don’t want to see the processes of the host.
Note: I was not able to get this one to work. The code compiles, the code runs, but then the contained processes run out of memory real quick. Despite having a generous cgroup setting for memory. I did not investigate much time into debugging this. Feel free to drop me a line if you happen to know what the problem is. 🤓
For the sake of completeness, here is my code:
log.Printf("newns: processes")
err = unix.Unshare(unix.CLONE_NEWPID)
if err != nil {
log.Fatal(err)
}
Isolating The Network
For the network namespace, we make another call to unshare()
. This will give
us a new namespace that does contain a loopback interface only. Clean and lean!
log.Printf("newns: network")
err = unix.Unshare(unix.CLONE_NEWNET)
if err != nil {
log.Fatal(err)
}
If you like to dig deeper into network namespacing: Try ip netns help
for a
start and don’t forget to link the namespace to the container’s default namespace before
unsharing!
Pivoting
Phew. That was a long journey. Now we can pivot the root! Hooray! The operation looks more complicated than it is. Basically, we just do the following things:
- Create a directory named
.old-root
. This is where the kernel will mount the old root into after pivoting. - Pivot (obviously)
- Change directory to
/
. - Unmount the old root.
- Remove the old root directory created in step one.
log.Printf("pivot root")
oldRootBeforePivot := newRoot + "/.old-root"
oldRootAfterPivot := "/.old-root"
err = os.MkdirAll(oldRootBeforePivot, os.ModePerm)
if err != nil {
log.Fatalf("mkdirall old root: %v", err)
}
unix.PivotRoot(newRoot, oldRootBeforePivot)
if err != nil {
log.Fatalf("pivot root: %v", err)
}
unix.Chdir("/")
if err != nil {
log.Fatalf("chdir: %v", err)
}
unix.Unmount(oldRootAfterPivot, unix.MNT_DETACH)
if err != nil {
log.Fatalf("unmount old root: %v", err)
}
unix.Rmdir(oldRootAfterPivot)
if err != nil {
log.Fatalf("rmdir old root: %v", err)
}
The Finally
Hold your breath, now comes the final operation before we fully enter container land! We
overload the process with the new binary to run. Here we are using sh
to get a
shell we can interact with.
Ideally, we would do this in a child process after fork()
or
clone()
, but it turns out, forking isn’t too much of a great idea in Golang.
I’ll spare you the details, but there are plenty of discussions about this at
the usual places.
err = unix.Exec("/bin/sh", []string{"sh"}, []string{})
log.Fatal(err)
Ideally, the line reading log.Fatal(err)
is never reached.
Running It!
It’s time to run this thing! Do yourself a favor and run this in a virtual machine. The code is not free of risk and could force you to reboot in case something goes wrong. And we don’t reboot our computers anymore nowadays, do we? 😂
# ./go-contain-me
2018/03/29 04:03:46 pid: 1054
2018/03/29 04:03:46 container id: c16f889c-6a49-49a4-bbb0-add1094993c5
2018/03/29 04:03:46 cpu cgroup: create
2018/03/29 04:03:46 cpu cgroup: add pid
2018/03/29 04:03:46 memory cgroup: create
2018/03/29 04:03:46 memory cgroup: add pid
2018/03/29 04:03:46 memory cgroup: set memory limit
2018/03/29 04:03:46 mount: overlay
2018/03/29 04:03:46 newns: mount
2018/03/29 04:03:46 remount: /
2018/03/29 04:03:46 mkdirall: /root/go-contain-me/containers/c16f889c-6a49-49a4-bbb0-add1094993c5/rootfs/proc
2018/03/29 04:03:46 mount: proc (proc)
2018/03/29 04:03:46 mkdirall: /root/go-contain-me/containers/c16f889c-6a49-49a4-bbb0-add1094993c5/rootfs/sys
2018/03/29 04:03:46 mount: sysfs (sysfs)
2018/03/29 04:03:46 mkdirall: /root/go-contain-me/containers/c16f889c-6a49-49a4-bbb0-add1094993c5/rootfs/dev
2018/03/29 04:03:46 mount: tmpfs (tmpfs)
2018/03/29 04:03:46 mkdirall: /root/go-contain-me/containers/c16f889c-6a49-49a4-bbb0-add1094993c5/rootfs/dev/pts
2018/03/29 04:03:46 mount: devpts (devpts)
2018/03/29 04:03:46 symlink: stdin
2018/03/29 04:03:46 symlink: stdout
2018/03/29 04:03:46 symlink: stderr
2018/03/29 04:03:46 mknod: null (259)
2018/03/29 04:03:46 mknod: zero (259)
2018/03/29 04:03:46 mknod: random (264)
2018/03/29 04:03:46 mknod: urandom (265)
2018/03/29 04:03:46 mknod: console (34817)
2018/03/29 04:03:46 mknod: tty (1280)
2018/03/29 04:03:46 mknod: full (263)
2018/03/29 04:03:46 newns: UNIX time sharing
2018/03/29 04:03:46 set hostname
2018/03/29 04:03:46 newns: network
2018/03/29 04:03:46 pivot root
Inside the container, we can see only our own mounts:
/ # mount
overlay on / type overlay (rw,nodev,relatime,lowerdir=/root/go-contain-me/images/busybox,upperdir=/root/go-contain-me/containers/c16f889c-6a49-49a4-bbb0-add1094993c5/rootfs,workdir=/root/go-contain-me/containers/c16f889c-6a49-49a4-bbb0-add1094993c5/workdir)
proc on /proc type proc (rw,relatime)
sysfs on /sys type sysfs (rw,relatime)
tmpfs on /dev type tmpfs (rw,nosuid,mode=755)
devpts on /dev/pts type devpts (rw,relatime,mode=600,ptmxmode=000)
We also have our own network namespace. All the host’s devices are gone. If we want to add network interfaces, we may use the netns functionality of iputils.
/ # ip a
1: lo: <LOOPBACK> mtu 65536 qdisc noop qlen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
The situation is not that good for the process namespace. As I said, I was not able to get it to work reliably. So here we see all the processes of the host as well. Meh.
/ # ps -e
PID USER TIME COMMAND
1 root 0:00 {systemd} /sbin/init
2 root 0:00 [kthreadd]
3 root 0:00 [ksoftirqd/0]
✂️
1054 root 0:00 sh
1066 root 0:00 ps -e
Full Source
Here is the full piece of code for your amusement and further experimentation. The code works with a directory structure that looks similar to this:
root@go-contain-me-1:~# tree
.
`-- go-contain-me
|-- containers
| `-- 8f0f5a2d-0ce8-4bd1-887a-2c5b275ee337
| |-- rootfs
| `-- workdir
`-- images
`-- busybox
`-- (a full user space here)
Compile the program:
$ CGO_ENABLED=0 GOOS=linux go build -a -ldflags '-extldflags "-static"' .
Here’s the source for your interest:
package main
import (
"flag"
"io/ioutil"
"log"
"os"
"strconv"
"github.com/google/uuid"
"golang.org/x/sys/unix"
)
var (
baseDir = "/root/go-contain-me"
)
func main() {
var err error
cpuShares := flag.String("cpu-shares", "",
"CPU shares of the container.")
memoryLimit := flag.String("memory-limit", "256m",
"Memory limit of the container.")
swapLimit := flag.String("swap-limit", "",
"Swap limit of the container.")
image := flag.String("image", "busybox", "name of the container image")
flag.Parse()
pid := unix.Getpid()
log.Printf("pid: %v", pid)
// generate container id
id := uuid.New().String()
log.Printf("container id: %v", id)
// CPU cgroup
cgroupCPU := "/sys/fs/cgroup/cpu/go-contain-me/" + id + "/"
log.Println("cpu cgroup: create")
err = os.MkdirAll(cgroupCPU, 0744)
if err != nil {
log.Fatal(err)
}
log.Println("cpu cgroup: add pid")
err = ioutil.WriteFile(cgroupCPU+"tasks", []byte(strconv.Itoa(pid)), 0644)
if err != nil {
log.Fatal(err)
}
if len(*cpuShares) > 0 {
log.Println("cpu cgroup: set shares")
err := ioutil.WriteFile(cgroupCPU+"cpu.shares",
[]byte(*cpuShares), 0644)
if err != nil {
log.Fatal(err)
}
}
// memory cgroup
cgroupMemory := "/sys/fs/cgroup/memory/go-contain-me/" + id + "/"
log.Println("memory cgroup: create")
err = os.MkdirAll(cgroupMemory, 0644)
if err != nil {
log.Fatal(err)
}
log.Println("memory cgroup: add pid")
err = ioutil.WriteFile(cgroupMemory+"tasks",
[]byte(strconv.Itoa(pid)), 0644)
if err != nil {
log.Fatal(err)
}
if len(*memoryLimit) > 0 {
log.Println("memory cgroup: set memory limit")
err := ioutil.WriteFile(cgroupMemory+"memory.limit_in_bytes",
[]byte(*memoryLimit), 0644)
if err != nil {
log.Fatal(err)
}
}
if len(*swapLimit) > 0 {
log.Println("memory cgroup: set swap limit")
err := ioutil.WriteFile(cgroupMemory+"memory.memsw.limit_in_bytes",
[]byte(*swapLimit), 0644)
if err != nil {
log.Fatal(err)
}
}
// create container directories
newRoot := baseDir + "/containers/" + id + "/rootfs"
workDir := baseDir + "/containers/" + id + "/workdir"
for _, path := range []string{newRoot, workDir} {
err = os.MkdirAll(path, os.ModePerm)
if err != nil {
log.Fatal(err)
}
}
// mount rootfs as overlay
log.Printf("mount: overlay")
imageRoot := baseDir + "/images/" + *image
err = unix.Mount("overlay", newRoot, "overlay", uintptr(unix.MS_NODEV),
"lowerdir="+imageRoot+",upperdir="+newRoot+",workdir="+workDir)
if err != nil {
log.Fatal(err)
}
// new mount namespace
log.Printf("newns: mount")
err = unix.Unshare(unix.CLONE_NEWNS)
if err != nil {
log.Fatal(err)
}
// remount rootfs in new namespace
log.Printf("remount: /")
err = unix.Mount("", "/", "", uintptr(unix.MS_PRIVATE|unix.MS_REC), "")
if err != nil {
log.Fatal(err)
}
// mount special
mounts := []struct {
source string
target string
fsType string
flags uint
options string
}{
{source: "proc", target: newRoot + "/proc", fsType: "proc"},
{source: "sysfs", target: newRoot + "/sys", fsType: "sysfs"},
{
source: "tmpfs",
target: newRoot + "/dev",
fsType: "tmpfs",
flags: unix.MS_NOSUID | unix.MS_STRICTATIME,
options: "mode=755",
},
{
source: "devpts",
target: newRoot + "/dev/pts",
fsType: "devpts",
},
}
for _, mnt := range mounts {
// ensure mount target exists
log.Printf("mkdirall: %v", mnt.target)
err := os.MkdirAll(mnt.target, os.ModePerm)
if err != nil {
log.Fatal(err)
}
// mount
log.Printf("mount: %v (%v)", mnt.source, mnt.fsType)
flags := uintptr(mnt.flags)
err = unix.Mount(mnt.source, mnt.target, mnt.fsType, flags, mnt.options)
if err != nil {
log.Fatal(err)
}
}
// essential file descriptors
for i, name := range []string{"stdin", "stdout", "stderr"} {
source := "/proc/self/fd/" + strconv.Itoa(i))
target := newRoot + "/dev/" + name
log.Printf("symlink: %v", name)
err := unix.Symlink(source, target)
if err != nil {
log.Fatal(err)
}
}
// create devices
devices := []struct {
name string
attr uint32
major uint32
minor uint32
}{
{name: "null", attr: 0666 | unix.S_IFCHR, major: 1, minor: 3},
{name: "zero", attr: 0666 | unix.S_IFCHR, major: 1, minor: 3},
{name: "random", attr: 0666 | unix.S_IFCHR, major: 1, minor: 8},
{name: "urandom", attr: 0666 | unix.S_IFCHR, major: 1, minor: 9},
{name: "console", attr: 0666 | unix.S_IFCHR, major: 136, minor: 1},
{name: "tty", attr: 0666 | unix.S_IFCHR, major: 5, minor: 0},
{name: "full", attr: 0666 | unix.S_IFCHR, major: 1, minor: 7},
}
for _, dev := range devices {
dt := int(unix.Mkdev(dev.major, dev.minor))
log.Printf("mknod: %v (%v)", dev.name, dt)
err := unix.Mknod(newRoot + "dev" + dev.name, dev.attr, dt)
if err != nil {
log.Fatal(err)
}
}
// new UTS (UNIX Timesharing System) namespace
log.Printf("newns: UNIX time sharing")
err = unix.Unshare(unix.CLONE_NEWUTS)
if err != nil {
log.Fatal(err)
}
// change hostname in new UTS
log.Printf("set hostname")
err = unix.Sethostname([]byte(id))
if err != nil {
log.Fatal(err)
}
/*
* can't get it to work :,(
// new process namespace
log.Printf("newns: processes")
err = unix.Unshare(unix.CLONE_NEWPID)
if err != nil {
log.Fatal(err)
}
*/
// new network namespace
log.Printf("newns: network")
err = unix.Unshare(unix.CLONE_NEWNET)
if err != nil {
log.Fatal(err)
}
// pivot root
log.Printf("pivot root")
oldRootBeforePivot := newRoot + "/.old-root"
oldRootAfterPivot := "/.old-root"
err = os.MkdirAll(oldRootBeforePivot, os.ModePerm)
if err != nil {
log.Fatalf("mkdirall old root: %v", err)
}
unix.PivotRoot(newRoot, oldRootBeforePivot)
if err != nil {
log.Fatalf("pivot root: %v", err)
}
unix.Chdir("/")
if err != nil {
log.Fatalf("chdir: %v", err)
}
unix.Unmount(oldRootAfterPivot, unix.MNT_DETACH)
if err != nil {
log.Fatalf("unmount old root: %v", err)
}
unix.Rmdir(oldRootAfterPivot)
if err != nil {
log.Fatalf("rmdir old root: %v", err)
}
err = unix.Exec("/bin/sh", []string{"sh"}, []string{})
log.Fatal(err)
}
Note: I used path.Join()
in a previous version but I decided
to remove it. I found that to be very cluttery. So this will not run properly should the
POSIX standard ever decide to replace the path separator /
with something
else. I am willing to take this risk, though. 😉