


Ingo Averdunk is a Distinguished Engineer in IBM and is 
responsible for Cloud Service Management and Site 
Reliability Engineering in the Cloud Adoption, Method and 
Solution Engineering office for IBM Cloud.

Dan Lüdtke is the Technical Lead of SRE at 
eGym, former army officer, and future space 
traveler.

danrl ingoa

@danrl_com @ingoa

https://twitter.com/danrl_com
https://twitter.com/ingoa


● 7:00 pm Welcome and Kick-off (Ingo, danrl)

○ A word from the sponsor eGym

○ An experiment: SRE MUC

● 7:30 pm Recap SREcon 2018 (Ingo, danrl)

● 8:00 pm Continuous performance profiling in production environments (Dmitri 

Melikyan)

● 8:30 pm Tales from On-call / Featured Post Mortem (Ingo)

● 8:35 pm Networking + Drinks

● 9:00 pm EOF (Go home inspired!)





● There is a systemic problem 
in the fitness market…

● ...the gym only works for a 
subset of people

● Our mission at eGym is to 
make the gym work for 
everyone









Core Team / SRE
● Run infrastructure
● Run production services
● Share knowledge and support 

developers
● On-call duty We are

hiring!





•
•

•

•

•



We're always looking for 20-30 minute 
talks (and 5-8 minute lightning talks) 
relating to the very broad field of Site 
Reliability Engineering. 

Get in touch with the organizers if you'd like to 
present!

Future 
Talks



Category:
“Tales from On-call / Featured Post 
Mortem”
● All Industries
● All aspects of Reliability

Get in touch with the organizers if you'd like to 
present!

Future Tales





Example: This 
indicates a slide 
or agenda point 
that is under 
Chatham House 
Rule regulation.





Agenda





Key Themes

• Containers are hot; they become a first-class target for SRE work

• Compared to last year, this year was less emphasis on technology, and more on the methodology, 
process, and foremost Experience / Lessons Learned

• Engineering rigid continues: Statistics & Math become mainstream

• SRE concepts start expanding beyond Availability, for instance Security

• Majority of presentations still from born-on-the-cloud companies, but lots of Enterprises in 
attendance



Containers from scratch
● Workshop by Avishai Ish-Shalom and Nati Cohen
● Python, Linux, and syscalls
● Isolate a process step by step from the “host” system

○ Container
● Good explanations, helpful library
● All Open Source, free on Github

○ https://github.com/Fewbytes/rubber-docker

https://danrl.com/blog/2018/go-contain-me/

https://twitter.com/nukemberg
https://www.linkedin.com/in/natict/
https://github.com/Fewbytes/rubber-docker
https://danrl.com/blog/2018/go-contain-me/


Incident Command - What We've Learned from the Fire Department
3 main roles: Incident commander , Tech lead , SME
Plus Scribe, Informed observer, Communications Lead (CL, cf Public Information Officer), Liaison 

Split between TL and IC during an incident, different focus (risk to be trapped in one or the other)
- Tech lead leads SMEs to analyze and respond, focuses inward
- IC responsibility for managing the incident response, focuses outward

Practice, practice, practice
• Google “Wheels of misfortune” (scenario, dangle on master, etc)
• Gameday to test capability of org, 
• Evaluation exercise to demonstrate that you can handle this
• “Name 3 people”, after 30min tell them 

"these 3 people are no longer available". 
Typically the best 3 people are named. 
See if you can do without them

 

Tips
• Give your emergency a name
• make first responder TL, not IC
• use a dedicated channel
• show role via display name
• share live links, not screenshots
• don’t dump long text into channel
• use chatbots to automate
• treat verbal as a sidebar
• maintain a status doc
• No freelancing (working on the problem 

without being part of the organized response)
• beware assumptions about roles
• use CAN reports: Conditions, Actions, Needs
• Use checklists
• Make changes cautiously
• explicitly declare end of incident



Security and SRE
SRE practice to build a performing security organization 
• trust but verify approach (monitoring telemetry)
• embrace the error budget, how quickly can we recover rather than just prevent. Self healing, auto 

remediation
• inject engineering practices (Dark Launch, Stripping of personally identifiable information, etc)

Benefits ... for security
Your data pipeline is your security lifeblood
Human in the loop is you last resort, not your first option
All security solutions must be scalable and always on

Benefits ... for SRE 
Remove single points of security failure like you do for availability
Assume that an attacker can be anywhere in your system or flow
Capture and measure meaningful security telemetry 

LinkedIn’s Engineering Hierarchy of Needs



Stable & Accurate Health-Checking of Horizontally-Scaled Services

• Moving Average (MA)
• Weighted MA
• Low-pass filtering 
• Rolling quantile
• Karhunen-Loève transform
• Subspace projection

• Simple thresholding
• Hypothesis testing
• Conditional entropy
• Distributional thresholding
• Mahalanobis distance
• Kullback-Leibler divergence
• Pattern matching / Clustering

• Sharp hysteresis
• Continuous hysteresis
• Finite State Machine
• Fuzzy logic program



Five Years of Multi-Cloud at PagerDuty
Multi Cloud = having the same product or service spread across multiple cloud provider

Lessons learned
- portability \o/
- teams build Reliability in, because they know they have to run it on different providers
- right sizing is hard (infrastructure across providers can't be matched exactly 1:1)
- deep technical expertise required (LB, databases, applications, HA systems)
- complexity overhead   
    = abstract away providers via Chef (different APIs, different instance sizing)
    = even less control over the network
- cannot use hosted services (i.e. RDS, document store)



Building a successful SRE in large enterprises - One year later
Recap from 2017 goo.gl/T83gcf
- Reliability is the most important feature
- Our users decide our reliability, not our monitoring / logs
- if you run a platform, then reliability is a partnership
- all popular systems eventually become platforms
Therefore we have to "do SRE " with your customers, too

Lessons Learned
• Enterprise love SRE
• willingness is the thing (single most relevant item)
• Start with the error budget
• Do one application first
• SRE is great for regulated industries
• you don't have to eat it all at once
• Not everyone makes it the whole way - and that's ok

http://goo.gl/T83gcf


● Highly relatable (for me)
● U.S. Digital Service

○ Internal “Consultants” helping government agencies to improve digital 
services

○ Change Agent
● Requesting a VM

○ AWS: *click*
○ GOV: six months! forms, paper, patience

● Launching login.gov for the Trusted Traveler Program (TTP) of CBP
○ 9months
○ Github, OSS, CI-CD pipelines
○ Major bug at launch day -> site taken offline
○ Bug fixed, back online → Celebrated Success!  ¯\_(ツ)_/¯

Leaping from Mainframe to AWS: Technology Time Travel in 
the Government



Capacity Prediction instead of Capacity Planning
Predicting
- empirical
- repeatable
- scalable
- grounded in data
- expectation of success

2 questions
1. Knowledge about how a service or platform behaves under all conditions and demands
2. Knowledge about behavior on future conditions and demands

Steps to perform model:
1. consider what drives your service resource consumption
2. Gather data and build aligned datasets

if not available right now, begin to ingest and store it
3. Build a predictive model via machine learning methods
            Scikit learn (http://scikit-learn.org/), R Libraries, TensorFlow
5. Store the weights, accuracy scores and metadata
6. Apply the inputs

Example: choosing the best model, evaluated multiple options:
- rides on trip
- drivers on trip
- drivers online
- completed trips (has highest correlation to CPU consumption)



The History Of Fire Escapes
● History lesson on deadly fire tragedies in and around NYC

○ How contingency plans failed
○ How it influenced politics and regulations
○ How it did not really work out well most of the time

● Entertaining!
○ People invited crazy things to escape fires → Bad tooling :)
○ Automated responses such as sprinklers
○ Failure domains such as interior fire partitions

● What can we learn from history here?
○ Prevent the spark (safety measures)
○ Automatically fix it (like the sprinklers)
○ Contain it (failure domains)
○ If disaster strikes: Have fire escapes ready (rollbacks, tooling, etc.)



Know thy enemy, How to prioritize and communicate risk
what are the risks - prioritize and communicate
SLO / Error Budget our primary tool for prioritizing our work
Prioritizing Risk: Intuition vs System (open to review, feedback, break into details; expose any biases)

3x3 matrix Likelihood (frequent, common, rare) vs. Impact (catastrophic, damaging, minimal)
useful for communication, less useful for prioritization (items tend to be in the middle)

Expected Cost = Probability (Likelihood) * Cost (Impact)
Likelihood
- quantified as MTBF
- Ideally from historical data
- Pragmatically we estimate (ETBF)
Impact
- quantified as MTTR (typically minutes)
- How much of your error budget will 
  the risk consume?
- ETTD (estimated time to detection)
- ETTR (estimated time to resolution)
- % of Users



What it means to be an effective engineer
Effective engineers:
● build simple things first
● Invest in iteration speed
● prioritize aggressively
● validate ideas early and often
● work hard and get things done
● build infrastructure for their relationships
● explicitly design their alliances
● explicitly share their assumptions 
● build trust by making implicit things explicit

Effective engineers work hard and get things done & focus on high-leverage 
activities & build infrastructure for their relationships



Your System Has Recovered from an Incident, but Have Your 
Developers?
We make sure that systems are recovered ?
Are we doing the same level of care to the people (ops and dev) ?
 
Doctors: peer support and counseling can help 
 
Stand-up comedians
Understand how to mentally get back to a better place
- hobbies, people you are about, talk to someone
 
Olympians face incredibly high-stress situations
What happens when you failed on a global stage?
Self compassion - regulate their stress and emotions

State rumination 
    - do you find it hard to stop thinking about problem after
    - do you have positive or negative thoughts when you reflect
    - Does thinking about the problem tend to make the problem worse



Some other interesting sessions

Lightning

Talks



References and Links
All presentations/video/voice available at 
https://www.usenix.org/conference/srecon18americas/program 

Some summary blogs:
https://michael-kehoe.io/post/srecon-americas-2018-day-1/ 
https://michael-kehoe.io/post/srecon-americas-2018-day-2/ 
https://michael-kehoe.io/post/srecon-us-day-3-what-im-seeing/ 
https://bridgetkromhout.com/speaking/2018/srecon/ 
https://noidea.dog/blog/srecon-americas-2018-day-1 
https://noidea.dog/blog/srecon-americas-2018-day-2 
https://noidea.dog/blog/srecon-americas-2018-day-3 
http://willgallego.com/2018/04/02/no-seriously-root-cause-is-a-fallacy/ 

https://www.usenix.org/conference/srecon18americas/program
https://michael-kehoe.io/post/srecon-americas-2018-day-1/
https://michael-kehoe.io/post/srecon-americas-2018-day-2/
https://michael-kehoe.io/post/srecon-us-day-3-what-im-seeing/
https://bridgetkromhout.com/speaking/2018/srecon/
https://noidea.dog/blog/srecon-americas-2018-day-1
https://noidea.dog/blog/srecon-americas-2018-day-2
https://noidea.dog/blog/srecon-americas-2018-day-3
http://willgallego.com/2018/04/02/no-seriously-root-cause-is-a-fallacy/


Questions?



Dmitri is a software engineer and the founder of StackImpact, 
where he is working on performance profiling and monitoring 
tools.





Questions?




